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The misalignment of a magnet in a beam line will cause
an alteration of the béam envelope at any later point in that
beam line. The position of a misaligned magnet may be described
in terms of six coordinates, three translational and three
rotational. The effect of a misalignment on a single particle
trajectory is derived to first order, including bilinear terms.
A bilinear effect is one which affects the beam line focusing
characteristics, but not the central ray, such as the effect of
rotating a quadrupole about its axis. The effect on the beam
envelope is calculated, both for a known magnet displacement and
for an uncertain magnet position. The formalism has been included

in the computer program TRANSPORT.1



I. Introduction

The effects of magnet misalignments are an important
consideration at every stage of beam line design, installation,
and operation. The selection of the optical mode, determination
of surveying accuracy requirements, and the choice of correcting
elements are all dependent on misalignment information.

Two types of misalignment information are typically needed.
To assess the general effect of misalignments in the design stage,
one needs to know the change in beam position and beam line
transmission characteristics due to uncertainties in the position
of each magnetic element in each seperate coordinate. Secondly,
to provide for correcting elements, one needs to know the effect
on the beam of specific misalignments.

In the following we derive a method of determining the
effect of magnet misalignments on a particle beam. We first
define a reference system in which to express misalignments.

Then we determine the effect of a misalignment on individual
particle trajectories. Finally we express the effect on the beam
envelope which describes the ensemble of particles comprising the
beam.

II. Particle Trajectory Coordinates

To specify the position and direction of a particle at any
instant in time, we employ a coordinate system defined with respect
to the beam line reference trajectory.2 The z axis is taken to
point along the reference trajectory; the x axis points to the

left, and the y axis points up. The position and direction of



the particle trajectory can then be given by a vector with six
components

| x

(1)
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The quantities x, x', y, and y' are respectively the horizontal
displacement and slope, and vertical displacement and slope of
the ray with respect to the central reference trajectory. & is
the longitudinal seperation of the ray from a ray which enters
the beam line at the same time as the given ray and travels
along the central trajectory. & is the fractional momentum
deviation of the particle from the design momentum of the beam
line.

When a charged particle passes through a perfectly aligned
magnet, the transformation may be described to first order by the
matrix equation2

X(1) = R X{0) (2)
The sets of six coordinates X(0) and X(1l) give the particle
position and direction at the entrance and exit faces of the
magnet respectively.

When a magnet is misaligned, the central trajectory of the

magnet is no longer continucus with the central trajectory of



the beam line (see figure 1 below}). In particular, at both
the entrance and exit faces, the reference coordinate system
external to the magnet no longer coincides with the reference
coordinate system internal to the magnet (see figure 2 below).
The misaligned and aligned reference coordinate systems are
related by a translation of origin plus a rotation of axes.

We continue to use X(0) and X(1) to denote respectively
the entrance and exit face ray coordinates in the aligned
cbordinate systems. We use a subscript f to denote the ray
coordinates Xf(O) and Xf(l) expressed in the misaligned
reference coordinate systems. To first order the ray coordinates
in the misaligned coordinate systems may be expressed in terms
of those in the aligned coordinate systems by an affine

transformation

Xf(O) S X(0) - D (3)

(8] O

[

Xf(l) sl x(_l) - Dy (&)

The symbols So and S1 represent six by six matrices, whose

form will be derived bhelow. The two six-vectors Do and Dl

are translations in the six dimensional space of particle

coordinates. The three vectors 55 and ﬁl formed from the

displacement coordinates {x, y, and z) of D, and D, give the

1
displacement due to the misalignment of the origins of the
reference coordinate systems. These two three-vectors are

shown in figure 1.



IIT. Magnet Misalignment Coordinates

The alignment of a rigid magnet has six degrees of freedom,
three translational and three rotational. These are conveniently

represented by the six gquantities

m = (s)

where dx, 8y, 6z are the displacements in the x, y, and z

directions, and Bx’ 8 and ez are the rotations about the

v*
X, ¥, and z axes respectively. The origin of the xyz coordinate
system, called the pivot, is the point about which the
misalignments are measured. If the pivot point is located at

some point on the reference trajectory, the x, y, and z axes

of the alignment coordinate system are taken to coincide with

the x, y, and z axes of the beam line reference coordinate

system.

The misalignments form a mathematical group, which is the
Euclidean group in three dimensions. This group is non-commutative
and the order in which the misalignments are imposed is important
if terms of higher order than linear are included. In practice,

however, misalignment values are sufficiently small so that a

first-order approach is justified. For these reasons, we consider



only those terms which are of first order in the misalignment
parameters,

IV. Transformation of Particle Traijectory Coordinates

We now temporarily delete the indices 0 and 1 indicating
the entrance and exit magnet faces respectively, and consider
the effect of a misalignment at a single magnet face. Later
we will combine the results from the two faces to obtain the
net effect of a misalignment.

When the components of the misalignment vector m are
small, we may expand the matrix S and the centroid displacement
D in the misalignment parameters. Retaining only first-order

terms we have

D = Am

S = I + Bm (6)

The six by six matrix A represents a transformation from the
misalignment parameters to the particle coordinates. I is the
identity matrix, and B represents a set of six matrices, one
for each of the misalignment parameters. A single six by six
matrix Bm is obtained by multiplying each of the six matrices
by its corresponding misalignment parameter and summing the
results. In terms of the misalignment parameters, the particle
coordinates in the misaligned reference coordinate system now

take the form

X = X - Am + BXm {(7)



Tb derive the forms of the matrices A and B, we consider
separately the effect of each of the various misalignment
parameters on each of the ray coordinates. First we derive
the effect on the ray coordinates of the various misalignments
as expressed in the coordinate system of the aligned magnet
face. Then we will'express the misalignment of the magnet
face in terms of the misalignment parameters about the pivot
point.

A rigid translation of the magnet face will change the
X, ¥, and z coordinates of a ray by the amount of the displacement.
The z translation will also intreoduce a short drift distance
{positive or negative length) at the magnet face, and will
contribute to B via the transformation matrix of that drift
space.

To determine the effect of a rotational misalignment we
form from the ray angles x' { = dx/dz) and y* ( = dy/dz) and
the number 1 ( = dz/dz), a three-vector (x',y',l) giving the
ray direction. We let 5#, ﬁ&, 52 be the three rotational
components of the misalignment vector. Then, including only

first-order effects, this three-vector is transformed as

X" 1 9, -ey x'
y' =i-6, 1 64 y' (8)
1 8 -8 1



In the misaligned

Ye

coordinate system the ray angles become

= y' + 0_ - &_x° {9)

Thus coordinate rotations about the aligned magnet face x and

y axes only shift

mixes x' and y'.

If we let m

the ray angles. A rotation about the z axis

represent the misalignment parameters relative

to the aligned magnet face coordinate system, and A and B

be the corresponding matrices, then equation (6) holds using the

barred guantities.

Using the results derived above, the matrices

K and B are now given by

_ 0o 0 1 0 0 0
A = (10)
0 -1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 O /
Bias ¥ Byys = 1
Byse = Boag = ~ B31e T " Byzg = 1 (11)

The first two indices for B correspond to the ray coordinates

and the third corresponds to the misalignment parameters. All

other elements of

B are zero.



In order to express the quantities m in terms of m, the
misalignment parameters at the pivot point, we need two items.
First is the orthogonal matrix O giving the three translational
coordinates at the magnet face in terms of those at the pivot
point

Xe = 0 X {12)

P

Also needed is the three-vector P which gives the position of
the origin of the aligned magnet face coordinate system, in
the coordinate system of the pivot.
We now define two three-vectors which give the translational
m, and rotational my parts of the misalignment vector m. We
also do the same for m. Then the contribution of m_ to ﬁ#

is given by equation (1l), so that

mx = 0 m {13)

The contribution of m, to ﬁe is zero, since parallel translations
do not affect angles.

The displacement of a point due to a rotation about the
pivot is given by the vector product of the rotation vector and
the position vector of the point. Therefore the displadements
of the magnet face ﬁx due to a rotation at the pivot are given
by

m, =0 (mex P ] (14)
The orthogonal transformation indicated by the matrix O gives

the misalignment parameters in the magnet face coordinate
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system. Finally the transformation of rotational misalignment

parameters is again given by egquation (11), so that

mg = 0 mg {15)

V. Evaluation of the Relevant Matrices

We choose the pivot to be the origin of the aligned magnet

entrance face coordinate system. Therefore we have

A0=A

B, = B (16)

For the exit face, the matrix O transforms from the
aligned entrance face coordinate system to the aligned exit
face coordinate system. The vector P gives the position of
the origin of the aligned exit face coordinate system in the
aligned entrance face coordinate system. In figure 1 it is
the vector which reaches from A to B.

For the exit face of a bending magnet we therefore have

cosa 0 sinag
0 = 0 l 0 {17)

-sinae 0 coso

- p{l - cosqg)
P = 0 (18)

psing
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where p is the radius of curvature of the central trajectory

and o is the total bend angle.

A, and B

1 1
/ cosa 0 0 sina sina
O 0 0 1 0
0 ~sina 1 H 0
Al =
0 -COSa 0 0 ]
-sina 0 0 -p (1l-cosa) cosa
\ 0 0 0 0 0
B(1)124 = B(l)344 = ~ p(l - cosa)
B(l)125 = B(l)345 = cosa
B(l)13p = Bl gy = = Bl g3, = = Blllypy =
B{1) 36 = Bl gy = ~ Blll 3145 = = Bll) 4 = =

All other elements of B(l) are zero.

We then derive for the matrices

a

0
~p{l-cosao)
~-sina

0

0 /

sina

cosa {20)

To calculate Al and Bl for a quadrupole, we take the

limit a+0 with ap =

L, the length of the magnet being held

(19)
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fixed. Then we have

B as given above.

Il

and Bl

VI. Effect on the Beam Envelope

To first order, the coordinates at the misaligned magnet
exit face are related to those at the misaligned entrance face

by a transfer matrix, so that
Xf(l) = R xf(o) (22)
or

X(1) ~ Am + B X(1)m = R [xm) - A m + BOX(O)m] (23)

If we solve for X(1) and discard all terms in m of order

higher than first, we then derive

x) = Rx(© + [ -ma|n + [ R, - 3R] xOn  (20)

For later use we define two new matrices F and G given by

G=RB_ - B.R (25)
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=1e) tha£
X(l) = RX(0) + Fm + GX(0)m (26)

An ensemble of particles in a beam line is often
represented as a six-dimensional ellipsoid. The equation of

this ellipsoid may be written in matrix form as follows:
X0 "X=1 (27)

where XT is the transpose of the coordinate vector X, and o
is a real, positive definite, symmetric matrix. The square
roots of the diagonal terms of the sigma matrix are a measure
of the beam size in each coordinate. If the centroid of this
ellipsoid does not fall on the central trajectory, then one
needs to specify this centroid position also. The sigma matrix
then gives the beam dimensions as measured about the centreoid.
The beam envelope entering a misaligned magnet may be
described in terms of the position in the aligned coordinate
system of the beam centrcid and the sigma matrix. For a known
misalignment m, the centroid is transformed as in eguation (25).

The sigma matrix is transformed by

T T

G(1) = RO(0)RT + Go(0)mRYT + Ro(0)miG

+ Go{(0)mm GT (28)

where the superscript T indicates a transpose.

For an uncertainty in position we define a covariance
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matrix. <mmT>, measuring the distribution of possible magnet
positions. The sigma matrix, which represents the beam
envelope entering the magnet may contain contributions from
both the original beam and from the uncertainty in positions
of previous magnets. We assume there is no correlation of
errors of positionihg between any two magnets. The beam
centroid is unaffected by an uncertainty in position. The

transformed sigma matrix becomes
o(1) = ro(0)ET + F{mDFT + Go(0) {mmTycT (29)

If the original sigma matrix is zero, then the.resultant
sigma matrix represents the uncertainty in the beam centroid
upon leaving the magnet. If the original sigma matrix encloses
a reglion of phase space, then the resultant sigma matrix
represents the envelope of possible particle trajectories,
including both the undisturbed sigma matrix and the effects of
the misalignment.

VII. Implementation

This model for misalignments has been implemented in the

computer program TRANSPORT.l

An arbitrary misalignment m may

be imposed on any magnet or section of the beam line.
Misalignments may also be nested. The effect of all misalignments
may then be added into the sigma matrix and thereby be traced

through the system. Alternatively, the effects of separate

components of the misalignment vector on individual magnets
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may be stored in a table. This table is traced through the
beam line and may be compared with the unperturbed sigma

matrix at any later point. Details of implementation are

described in the TRANSPORT manual.
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